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ABSTRACT 

 
 
The Brier skill score, relative operating characteristic (ROC), and economic value 

diagrams are commonly used by the weather forecast community as tools for 

probabilistic forecast verification.  Unfortunately, all may provide unduly optimistic 

estimates of forecast skill if their computation follows procedures that implicitly assume 

that the climatology does not vary among samples.  In computing the Brier skill score, if 

the Brier score of the reference climatological forecast assumes the climatology is the 

same over a wide geographic region when it is not, false skill may be reported.  For the 

ROC and economic value diagrams, false skill can be reported when the contingency 

tables underlying these scores are populated with data from grid points with differing 

climatologies.    An explanation of this false skill is provided, as well as guidelines for 

how to adapt these diagnostics to avoid this problem.
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1. Introduction 

 
 For much of the history of numerical weather prediction, the primary motivation has 

been to improve deterministic weather forecasts.  With the advent of ensemble forecast 

techniques, there has been a renewed interest in improving probabilistic weather forecasts 

and the methods for verifying these forecasts.   Ensemble forecast verification has inherited 

several metrics for probabilistic forecast verification, and many new ones have been 

developed or adapted in recent years.   We continue to learn about what these diagnostics are 

telling us about ensemble forecasts.  

 The question to be addressed in this note is whether several commonly used ensemble 

forecast verification metrics correctly report no forecast skill when none exists. This is 

motivated by our own experiences of diagnosing unexpected positive skill.  Examples can be 

found in the open literature as well.  For example, Buizza et al. (1999) verified their 

ensemble forecasts in many ways.  They found that some of their scores did not approach the 

expected asymptotic value associated with no skill as forecast lead increased and the 

forecasts increasingly resembled random samples from climatology.   Juras (2000) offered a 

possible explanation in a comment on this article, suggesting that the chosen metrics might 

report false skill if climatological frequencies vary within the verification area. 

 This note extends the comments of Juras (2000).  We choose to examine three 

common skill metrics, the Brier skill score (Wilks 1995), the relative operating characteristic 

(ROC; Swets 1973, Harvey et al. 1992), and economic value diagrams (Richardson 2000).  

All may be sensitive to reporting forecast skill when none is present.  Other metrics such as 

the ranked probability skill score (Wilks 1995) will not be discussed but are subject to the 

same problem. 
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  Below, section 2 will provide a brief review of the Brier skill score, the ROC, and 

economic value diagrams, as well as the mechanics for how they are generated with 

ensemble forecasts.  Section 3 follows with a very simple example of false skill and an 

explanation of why it occurs.  Section 4 shows that the false value may or may not be 

reported with real meteorological data, depending on what event is being considered.  

Section 5 concludes with a discussion of the implications of this problem. 

 
2. Brier skill score, ROC, and economic value diagrams 
 
 
 Brier scores and Brier skill scores have been used for decades.   The Brier score is a 

measure of the mean-square error of probability forecasts for a dichotomous (binary) event, 

such as the occurrence/non-occurrence of precipitation.  A review is provided in Wilks 

(1995), and references therein provide further background.   The Brier score is often hard to 

interpret; is a Brier score of 0.6 good or bad?  Consequently, the Brier score is often 

converted to a skill score, normalizing the score by that of a reference forecast such as 

climatology (ibid).  A Brier skill score (BSS) of 1.0 indicates a perfect forecast, while a BSS 

of 0.0 should indicate the skill of the reference forecast. 

 The relative operating characteristic (ROC) and economic value diagrams have 

gained widespread acceptance in the past few years as tools for ensemble verification.  The 

ROC has been used for decades in engineering and biomedical and psychology applications; 

see an overview in Swets (1973).   Its application in meteorology was proposed in Mason 

(1982), Stanski et al. (1989), and Harvey et al. (1992); section 3 of this last reference 

provides a good introduction to the basic concepts.   In the Hamill et al. (2000) summary of 

an ensemble workshop, it was recommended as a standard verification metric, and this the 
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ROC was recently made part of the World Meteorological Organization’s (WMO) standard 

ensemble verification metrics (WMO, 1992).  Characteristics of the ROC have been 

discussed in Mason and Graham (1999), Juras (2000), Wilson (2000), Buizza et al. (2000), 

Wilks (2001), Kheshgi and White (2001), Kharin and Zwiers (2003),  and Marzban (2004).  

The technique has been used to diagnose forecast accuracy in, for example, Buizza and 

Palmer (1998), Buizza et al. (1999), Hamill et al. (2000), Palmer et al. (2000), Richardson 

(2000, 2001ab), Wandishin et al. (2001), Mullen and Buizza (2001, 2002), Bright and Mullen 

(2002), Yang and Arritt (2002), Legg and Mylne (2004), Zhu et al. (2002), and Gallus and 

Segal (2004). 

 Economic value diagrams were introduced to the meteorology community by  

Richardson (2000).   These diagrams provide information about the potential economic 

value of ensemble forecasts for a particular event.  The diagrams indicate the relative 

value as a function of the user’s cost/loss ratio.  A value of 1.0 indicates that the full 

economic value of a perfect forecast should be realized, and a value of 0.0 indicates the 

value of climatology.  This framework was also used in Palmer et al. (2000) and 

Richardson (2001).  Demonstrations of its application value can be found, for instance, in 

Richardson (2000), Palmer et al. (2000), Buizza et al. (2003), and Zhu et al. (2004). 

 A review of the statistical theory underlying the ROC and economic value 

diagrams can be found in other sources.  Harvey et al. (1992) provide a thorough review 

of the concepts underlying the ROC, and Richardson (2000) and Zhu et al. (2002) explain 

economic value diagrams.  Here we provide only the mechanics of how to generate these 

diagrams from ensemble forecasts.  
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 Start by defining a dichotomous (two-category) event of interest. Let Xe(j,k) = 

[X1(j,k), … , Xn(j,k)] be an n-member ensemble forecast for the jth of m locations and the 

kth of r case days, sorted from lowest to highest.  This sorted ensemble is then converted 

into an n-member binary forecast Ie(j,k) = [I1(j,k), … , In (j,k)] indicating whether the 

event was forecast or not in each member.  The observed weather is also noted and 

converted to binary, denoted by Io(j,k).  

 

a.  Brier skill scores 

 Assuming that each member forecast is equally likely, a forecast probability 

pf(j,k) is calculated from the dichotomized ensemble:  

 pf (j,k) = 
Ii ( j,k)i=1

n

!
n

  .      (1) 

The Brier score of the forecast BSf is calculated as 

 BSf =
k=1

r

! pf ( j,k) " Io( j,k)( )
2

j=1

m

!  .     (2) 

A Brier skill score (BSS) is calculated as  

 BSS = 1.0 – BSf / BSr  ,       (3) 

where BSr is the Brier score of the reference probability forecast, typically the probability 

of event occurrence from climatology.   An ambiguity and potential source of false skill 

may be traced to the method for calculating BSr, to be illustrated in sections 3 and 4.  One 

method would be to generate a climatological probability pc(j) of event occurrence 

unique to each location of the m locations in the domain,  

 pc ( j) =

Io
k=1

r

! j,k( )

r
,        (4) 
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in which case BSr would be  

 BSr = pc j( ) ! Io j,k( )( )
j=1

m

"
k=1

r

"
2

  .    (5) 

Another way would be to calculate a climatology pc averaged over all locations 

 pc =

Io j,k( )
j=1

m

!
k=1

r

!

r "m
 ,        (6) 

and let 

 BSr = pc ! Io j,k( )( )
j=1

m

"
k=1

r

"
2

 .      (7) 

 

b. ROC diagrams 

 Calculation of the ROC starts with the population of 2x2 contingency tables, with 

separate contingency tables tallied for each sorted ensemble member and location.   The 

contingency table for the jth location and ith sorted ensemble member has four elements: 

Γi(j) = [ ai(j), bi(j), ci(j), di(j)], indicating the relative fraction of hits, misses, false alarms, 

and correct rejections (Table 1).  The contingency table is populated using data over all r 

case days, and then each is normalized so the sum of the elements is 1.0.   

 The hit rate (HR) for the ith sorted forecast and jth location is defined as  

 HRi (j) = ai (j) / (ai(j) +ci(j)).         (8) 

Similarly, the false alarm rate for the ith sorted forecast is defined as 

 FARi (j) = bi(j)  / (bi(j) +di(j)).        (9) 

The ROC for a given location is a plot of HRi (j) (ordinate) vs. FARi (j) (abscissa), i = 1, 

… , n. A ROC curve that lies along the diagonal HR=FAR line indicates no skill; a curve 
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that sweeps out maximal area, as far toward the upper left corner as possible, indicates 

maximal skill. 

 It has often been judged to be more convenient to examine one rather than m 

different ROC curves.  Hence, a single ROC is commonly generated from contingency 

tables averaged over all locations, i.e., !
i
= ai ,bi ,ci ,d i( )where, ai = ai (j)

j=1

m

! / m , and 

bi ,ci , and d i are similarly defined.  Then  

 HR
i
= ai ai + ci( )         (10) 

and  

 FAR
i
= bi bi + di( )         (11) 

c.  Economic value diagrams 

 Table 1 also indicates the economic costs that are associated with each 

contingency.   See Zhu et al. (2002) for a more complete review of the underlying 

principles.  The assumption is that an economic decision may be made upon the forecast 

information.  Suppose adverse weather is associated with the event Io(j,k)=1. Based on 

the forecast information the decision maker can protect, at cost C, against adverse effects, 

taking an additional smaller unprotectable loss Lu if the event occurs.  If the event is not 

forecast to occur but it does occur, a total loss L = Lp + Lu is realized, where Lp is the 

additional loss that could have been protected against.   A correct NO forecast incurs no 

cost.   

 The expected expense due to a decision based on the ith ensemble member 

forecast at the jth location can be shown (ibid) to be  

 Ef (i,j)  = ai (j)(C + Lu) + ci (j) C + bi (j) (Lp + Lu) .   (12) 
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Let o(j) be the climatological frequency of the event occurrence, o(j) = ai (j)+ bi(j)  (note 

that the same o(j) will be calculated regardless of the value of i).  The expense associated 

with using climatological information for a decision is 

 Ec = o(j) Lu + Min (o(j) Lu , C) .      (13) 

The expense of a perfect forecast is  

 Ep = o(j) (C + Lu) .        (14) 

Assume Lp and Lu are fixed.  The overall economic value for the ith sorted ensemble 

forecast at the jth location and the cost C is  

 V (i,j,C) = ( Ec – Ef (i,j) ) / (Ec – Ep) .     (15) 

This value is typically calculated for a range of costs between 0 and Lp. At a given 

location, the user then has n possible expected values associated with using each of the n 

ensemble forecasts as a possible decision threshold.  The user typically chooses the one 

that provides the largest value.   

 Vmax(j,C) = max (V(1,j) , … , V(n,j))      (16) 

The determination of the optimal Vmax(j,C) is typically re-calculated for other C’s with 

values between 0 and Lp, since different a different sorted ensemble member may provide 

the largest value for a different C.  The optimal value is plotted as a function of C / Lp .  

 As with ROCs, the user may prefer to examine only one economic value diagram 

synthesizing information over all locations.  This could be computed in two ways; an 

averaged value V max (C)  could be computed first as an average of values at the different 

locations 
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 V max (C) = V
max
( j,C)

j=1

m

! .       (17) 

Alternatively, economic value could be calculated from the average contingency tables 

Γi.  In this case, (12) is replaced by  

 E f i( ) = ai C + Lu( ) + ciC + bi Lp + Lu( ) ,     (18) 

and (15) is replaced by 

 V (i,c) = Ec + E f i( )( ) Ec ! Ep( ) .      (19) 

(16) and (17) are replaced by  

 
 
V max C( ) = max V 1,C( ),…,V n,C( )( ) .     (20) 

 

3. An example of false skill: synthetic data at two independent locations. 

 

 Suppose our world consists of two small, isolated islands, and suppose weather 

forecasting is utterly impossible on this planet; the best one can do is to forecast the 

climatological probability distribution appropriate to each island.  To simulate this, 

assume that at island 1, the daily maximum temperature was randomly sampled from its 

climatological distribution ~ N(+2, 1), that is, the temperature was a draw from a normal 

distribution with a mean of 2.0 and a standard deviation of 1.0.  At island 2, the daily 

maximum temperature ~ N(-2, 1).  100-member ensembles of weather forecasts were 

generated by taking random draws from each island’s climatology.  100,000 days of 

weather and ensemble forecasts were simulated, and we consider the event that the 

temperature was greater than 0.  On island 1, both verification and ensemble ~ N(+2, 1) 



 11 

and were drawn independently.  The same process was repeated for island 2, but 

verification and ensemble ~ N(-2, 1) .   

 

a.  Brier skill scores 

 From the synthetic verification and sorted ensembles,  the BSS was calculated 

two ways, assuming the reference score could be calculated individually using (5) or over 

both islands using (7).  The BSS was 0.0 (correct) when using (5) and 0.32 (incorrect) 

when using (7). Using one averaged climatology as a reference was clearly inappropriate. 

 

b. Relative operating characteristics 

 ROCs were generated for each island individually  (Figs. 1 a–b) using (8) - (9), 

and indeed, these each show no skill (area = 0.5).   To generate one ROC over the two 

islands, (10) – (11) were used.  A ROC was then generated from the pooled tables (Fig. 

1c).  Note the very large positive area under the ROC curve, suggesting nearly perfect 

forecast skill.   

 Why was skill now indicated by the ROC?  By compositing data over the two 

islands, the ROC analysis no longer implicitly assumed that the climatological 

distribution was ~ N(+2, 1)   or   ~ N(-2, 1).  Rather, it assumed that the climatological 

distribution was ~ 0.5 • N(+2, 1) +0.5 • N(-2, 1), a bimodal distribution.  Further, the 

contingency tables were populated consistent with the assumption that the forecast 

perfectly predicted which mode of the distribution the verification lay in; when the 

forecasts were drawn from the positive mode N(+2, 1), the observed states were also 

drawn from the positive mode N(+2, 1),  and when the forecasts were drawn from N(-2, 
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1),  the observed state were drawn from N(-2, 1) as well.   This can be demonstrated by 

generating a ROC simulated under these assumptions.  Such a ROC is identical to that in 

Fig. 1c. 

 

c. Economic value diagrams. 

 Figure 2 shows the economic value diagrams under the assumption that Lu = 0.  

As with the ROCs, the economic value was nil when computed at the individual islands 

using (16), but the diagram indicated that when averaged contingency tables and (18) – 

(20) were used, near-perfect economic value was realized at moderate cost/loss ratios.  

The underlying explanation is the same as for the ROC, the redefinition of climatology 

from the inappropriate compositing of contingency table elements. 

 

4. 850 hPa temperature 

 

 Consider whether or not false skill can be reported with real data.   0000 UTC 850 

hPa temperature analyses were extracted from the NCEP-NCAR reanalysis at a set of 

26x12 grid points covering the conterminous US.  Data was considered for the first 60 

days of 1979 to 2001.   The grid spacing was 2.5° in latitude and longitude.  Let T denote 

the temperature at a grid point, and T ’ denote the temperature anomaly.  Three events 

were considered:  (1) T > 0C, (2) T ’ > 3C, and (3) T ’ > Q 2/3, where Q 2/3 was the upper 

tercile of the climatological distribution, i.e., the temperature threshold defining the 

boundary between the lower two-thirds of the distribution and the upper third. Q 2/3 was 

specified uniquely for each grid point.  
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 First the method for generating contingency tables for the event T > 0C is 

described.  For each of the first 60 days of the year and for each of the 23 years (1380 

samples), the following process was performed at each grid point:  (1) the analyzed 

temperature was extracted at that grid point, (2) a cross-validated, 50-member ensemble 

was randomly drawn from the climatology of that grid point, excluding draws from the 

year being processed,  (3) the ensemble was sorted, and (4) contingency tables were 

populated for that grid point.  At the end of this process, the contingency tables for all of 

the grid points were added together. 

 When generating ROCs for the events T ’ > 3C, and T ’ > Q 2/3, several additional 

steps were required.  After step (1) above, the climatological mean for each date and 

location was determined and subtracted from the temperature, creating a database of 

temperature anomalies.  The estimated climatological mean was estimated using a 30-day 

window centered on each day and cross-validated by year, using the remaining 22 years.  

Also, the terciles of the distribution were determined for each grid point. 

 

a.  T  > 0 C 

 When a location-dependent reference climatology is used (eqs. 4-5), the BSS is -

0.03.  When a domain-averaged climatology is used (eqs. 6-7), the BSS reports a false 

skill of +0.52. 

 Figure 3a shows ROCs calculated from the individual grid point data; the ROC 

for every third grid point in the N-S and E-W directions are plotted.  The ROCs exhibit 

sampling variability but lie close to the HR=FAR line.  However, the ROC based on a 
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contingency table summed up over all the grid points (Fig. 3b) diagnose a very large 

amount of skill.   Figure 3c shows that when the economic value is calculated separately 

at each grid point and then averaged, its value is effectively zero.  However, the 

economic value calculated from the contingency table sums is large.  Again, these are 

artifacts of the widely differing climatologies for the grid points, as in section 2.  In this 

application, grid points in the north of the domain will almost always have 850 hPa 

temperatures < 0, while this rarely happens at the southernmost grid points.  

 

b. T ’ > 3 C 

 Considering events defined by anomalies of temperature rather than temperature 

itself, the ensemble should have a much more consistent climatology from grid point to 

grid point.  However, at the southernmost, more tropically influenced grid points, a 

deviation of 3 C represented a relatively large deviation from climatology, while at the 

northernmost grid points, 3C was smaller.  The climatological probability of exceeding 

this ranged from 0.45 in the north to 0.06 in the south. 

 When the location-dependent reference climatology was used, the reported BSS 

was -0.03.  When the domain-averaged climatology was used, the BSS was  

-0.002.  The extra skill when testing deviations from climatology was much less than 

when the fixed threshold was tested in the previous example. 

 Figures 4 a-b show the ROCs for individual grid points and from the summed 

contingency tables, and Fig. 4c shows the economic values as in Fig. 3c.  The area under 

the ROC curve was much reduced but was still greater than the expected 0.5.  The 
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economic value from the contingency table sums still reported unrealistic positive value 

at cost-loss ratios around 0.3, but they were much smaller. 

 

c. T ’ > Q 2/3 

 By evaluating the probability of exceeding a quantile of the distribution, the 

climatological probabilities have been rendered uniform across all grid points; the 

climatology probability is of course 1/3 for this event.  By construction, the BSS is the 

same for both, -0.03.  With ROCs and economic values, whether we examined the 

average of scores at the grid points or computed the scores from contingency table sums, 

we got the expected result of no skill  (Fig. 5).   

 

4.  Discussion 

 The preceding examples have demonstrated that the Brier skill score, relative 

operating characteristic, and economic value diagrams must be used with care when 

verifying probabilistic weather forecasts.  Typically, the meteorological question being 

asked is something akin to “what is the general skill of my forecast averaged over 

Europe?”  The naïve approach for calculating the Brier skill score may be to compute it 

under the assumption that the climatology is invariant across the verification region.  

Similarly, when diagnosing the relative operating characteristic or economic value, a 

common step is thus to composite the forecast data into contingency tables that 

accumulate weather information across the domain.  The preceding analysis showed that 

these diagnostics may falsely report positive skill in situations where the climatology 
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differs across the domain.  The more the climatology differs, the larger the falsely 

reported skill. 

 Several implications can be made about ensemble verification:  

 - Many prior studies, including one by the lead author, should be re-evaluated, for 

the reported skill may be erroneous. 

 - ROC and economic value calculations should not report false skill if the 

researcher chooses to verify an event where the climatological probabilities are the same 

at all grid points.  Section 4 demonstrated that, for example, climatological forecasts of 

quantiles of the 850 hPa temperature distribution did not report false positive skill.  

 - Other scores such as the ranked probability skill score (Wilks 1995) are also 

subject to an ambiguous interpretation of how to compute the reference climatology.   

The researcher should ensure that the chosen method does not report a false skill. 

 - Richardson (2001) demonstrated in a carefully controlled experiment that there 

was a theoretical equivalence between the Brier skill score and the integral of economic 

value assuming that users have a uniform distribution of cost-loss ratios between 0 and 1.  

One of the underlying assumptions was an invariant climatology across all samples.  If 

this assumption is not met, then neither is this equivalence. 
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    Event forecast by ith member?  

  
     YES    NO 
   ------------------------------------------------------------------------ 
  YES |  ai (j)  |  bi (j)   | 
Event   |    Mitigated loss (C+Lu) | Loss (L = Lp + Lu) | 
Observed?  |---------------------------------- | ---------------------------------- | 
  NO |  ci (j)  |  di (j)  | 
   |        Cost (C)  |        No cost  |  
   ------------------------------------------------------------------------ 
 
 
Table 1:  Contingency table for the ith of the n sorted members at the jth location, 
indicating the relative fraction of hits [ai(j)], misses [bi(j)], false alarms [ci(j)], and correct 
rejections [di(j)].   The economic costs associated with each contingency are also shown 
and are discussed in the text. 
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Figure 1:  ROC diagrams for the event of temperature > 0.  (a) Island 1, (b) Island 2, (c) 
Islands 1 and 2 together. 
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Figure 2: Economic value for the event temperature > 0 at islands 1, 2, and both.
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Figure 3: ROC and economic value for the event of 850 hPa temperature > 0 C using 
random draws from climatology. (a) ROC curves for selected individual locations around 
CONUS, (b) ROC curve based on sum of contingency tables at individual grid points, 
and (c) economic value, plotted both as an average of values at individual grid points 
(dashed), or from the contingency table sums (solid).
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Figure 4:  As in Fig. 3, but for the event of 850 hPa temperature anomaly > 3C. 
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Figure 5: As in Fig. 3, but for the event of 850 hPa temperature anomaly is greater than 
the upper tercile of the climatological distribution.   


